Part Number Hot Search : 
L78S09CT 21060 STUD432L X29LV SD1030 ASRD703T MAE15015 1623389
Product Description
Full Text Search
 

To Download IRL3705ZLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 hexfet ? power mosfet v dss = 55v r ds(on) = 8.0m i d = 75a this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely lowon-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description features  logic level  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free irl3705zpbf irl3705zspbf IRL3705ZLPBF d 2 pak irl3705zspbf to-220ab irl3705zpbf to-262 IRL3705ZLPBF absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw  thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.14 c/w r cs case-to-sink, flat greased surface  0.50 CCC r ja junction-to-ambient  CCC 62 r ja junction-to-ambient (pcb mount)  CCC 40 -55 to + 175 300 (1.6mm from case ) 10 lbf  in (1.1n  m) 130 0.88 16 max. 8661 340 75 180 120 see fig.12a, 12b, 15, 16 pd - 95579a downloaded from: http:///

 2 www.irf.com s d g s d g el ectr i ca l ch aracter i st i cs @ t j = 2 5 c ( un l ess ot h erw i se spec ifi e d) parameter min. t y p. max. units v (br)dss drain-to-source breakdown voltage 55 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.055 CCC v/c CCC 6.5 8.0 r ds(on) static drain-to-source on-resistance CCC CCC 11 m CCC CCC 12 v gs(th) gate threshold voltage 1.0 CCC 3.0 v gfs forward transconductance 150 CCC CCC v i dss drain-to-source leakage current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leakage CCC CCC 200 na gate-to-source reverse leakage CCC CCC -200 q g total gate charge CCC 40 60 q gs gate-to-source charge CCC 12 CCC nc q gd gate-to-drain ("miller") charge CCC 21 CCC t d(on) turn-on delay time CCC 17 CCC t r rise time CCC 240 CCC ns t d(off) turn-off delay time CCC 26 CCC t f fall time CCC 83 CCC l d internal drain inductance CCC 4.5 CCC between lead, nh 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from package and center of die contact c iss input capacitance CCC 2880 CCC c oss output capacitance CCC 420 CCC c rss reverse transfer capacitance CCC 220 CCC pf c oss output capacitance CCC 1500 CCC c oss output capacitance CCC 330 CCC c oss eff. effective output capacitance CCC 510 CCC source-drain ratin g s and characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 75 (body diode) a i sm pulsed source current CCC CCC 340 ( bod y diode )  v sd diode forward volta g eC C C C C C 1 . 3 v t rr reverse recover y t i m e C C C1 62 4n s q rr reverse recover y char g eC C C 7 . 4 1 1 n c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 5.0v  v dd = 28v i d = 43a r g = 4.3 t j = 25c, i s = 52a, v gs = 0v  t j = 25c, i f = 43a, v dd = 28v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 52a  v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. conditions v gs = 5.0v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 44v, ? = 1.0mhz v gs = 0v, v ds = 0v to 44v  v gs = 5.0v, i d = 43a  v ds = 25v, i d = 52a i d = 43a v ds = 44v v gs = 16v v gs = -16v v gs = 4.5v, i d = 30a  downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 12v 10v 8.0v 5.0v 4.5v 3.5v 3.0v bottom 2.8v 60s pulse width tj = 25c 2.8v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.8v 60s pulse width tj = 175c vgs top 12v 10v 8.0v 5.0v 4.5v 3.5v 3.0v bottom 2.8v 0 2 4 6 8 10 12 14 16 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 15v 60s pulse width 0 2 04 06 08 01 0 01 2 0 i d ,drain-to-source current (a) 0 20 40 60 80 100 120 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 8.0v downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 02 03 04 0 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v v ds = 28v v ds = 11v i d = 52a 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 43a v gs = 5.0v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.5413 0.0003840.5985 0.002778 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 90 100 i d , d r a i n c u r r e n t ( a ) limited by package downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge  fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l fig 13b. gate charge test circuit 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.7a 8.5a bottom 52a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 125 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 52a downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
     + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90%10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9 

 
 

   
      
   lot code 1789 example: t his is an irf1010 note: "p" in as sembly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 int ernat ional part number rect ifier lot code assembly logo year 0 = 2000 dat e code week 19 line c notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com  


 
  


  
      
   dat e code year 0 = 2000 we e k 02 a = as s e mb l y s i t e code rectifier international part number p = de s ignat e s l e ad - f r e e product (optional) f530s in the assembly line "l" as se mb le d on ww 02, 2000 this is an irf530s with lot code 8024 int e rnat ional logo rectifier lot code as s e mb l y ye ar 0 = 2000 part number dat e code line l we e k 02 or f530s logo assembly lot code notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 to-262 part marking information to-262 package outlinedimensions are shown in millimeters (inches) logo rectifier international lot code as s e mb l y logo rectifier international dat e code we e k 19 year 7 = 1997 part number a = as s e mb l y s i t e code or product (optional) p = designates lead-free e xample : t his is an irl3103l lot code 1789 as s e mb l y part numbe r dat e code we e k 1 9 line c lot code ye ar 7 = 1997 as s embled on ww 19, 1997 in the ass embly line "c" notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/2010  repetitive rating; pulse width limited bymax. junction temperature. (see fig. 11).  limited by t jmax , starting t j = 25c, l = 0.09mh r g = 25 , i as = 52a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . 
 limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  this is only applied to to-220ab pakcage.  this is applied to d 2 pak, when mounted on 1" square pcb (fr- 4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. r is measured at t j of approximately 90c.  

 ! 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRL3705ZLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X